Monday, 6 November 2017

Observações em modelo móvel


Net. sourceforge. openforecast. models Classe WeightedMovingAverageModel Um modelo de previsão média móvel ponderada é baseado em uma série temporal artificialmente construída, na qual o valor de um determinado período de tempo é substituído pela média ponderada desse valor e pelos valores de algum número de tempo anterior Períodos. Como você pode ter adivinhado a partir da descrição, este modelo é mais adequado para dados da série temporal, ou seja, dados que mudam ao longo do tempo. Uma vez que o valor de previsão para um determinado período é uma média ponderada dos períodos anteriores, a previsão sempre parecerá atrasada por aumentos ou diminuições nos valores observados (dependentes). Por exemplo, se uma série de dados tiver uma tendência ascendente notável, então uma previsão média móvel ponderada geralmente fornecerá uma subestimação dos valores da variável dependente. O modelo de média móvel ponderada, como o modelo de média móvel, tem uma vantagem em relação a outros modelos de previsão, na medida em que ele suaviza picos e depressões (ou vales) em um conjunto de observações. No entanto, como o modelo de média móvel, ele também possui várias desvantagens. Em particular, este modelo não produz uma equação real. Portanto, não é tão útil como uma ferramenta de previsão de longo alcance. Só pode ser usado de forma confiável para prever alguns períodos no futuro. Desde: 0.4 Autor: Steven R. Gould Campos herdados da classe net. sourceforge. openforecast. models. AbstractForecastingModel WeightedMovingAverageModel () Constrói um novo modelo de previsão média móvel ponderada. WeightedMovingAverageModel (pesos duplos) Constrói um novo modelo de previsão média móvel ponderada, usando os pesos especificados. Previsão (double timeValue) Retorna o valor de previsão da variável dependente para o valor dado da variável de tempo independente. GetForecastType () Retorna um nome de uma ou duas palavras deste tipo de modelo de previsão. GetNumberOfPeriods () Retorna o número atual de períodos usados ​​neste modelo. GetNumberOfPredictors () Retorna o número de preditores usados ​​pelo modelo subjacente. SetWeights (pesos duplos) Define os pesos utilizados por este modelo de previsão média móvel ponderada para os pesos dados. ToString () Isso deve ser substituído para fornecer uma descrição textual do modelo de previsão atual, incluindo, sempre que possível, qualquer parâmetro derivado usado. Métodos herdados da classe net. sourceforge. openforecast. models. AbstractTimeBasedModel WeightedMovingAverageModel Constrói um novo modelo de previsão média móvel ponderada, usando os pesos especificados. Para que um modelo válido seja construído, você deve chamar init e passar um conjunto de dados contendo uma série de pontos de dados com a variável de tempo inicializada para identificar a variável independente. O tamanho da matriz de pesos é usado para determinar o número de observações a serem utilizadas para calcular a média móvel ponderada. Além disso, o período mais recente receberá o peso definido pelo primeiro elemento da matriz, isto é, pesos0. O tamanho da matriz de pesos também é usado para determinar a quantidade de períodos futuros que podem ser efetivamente previstos. Com uma média móvel ponderada de 50 dias, não podemos razoavelmente - com algum grau de precisão - prever mais de 50 dias além do último período para o qual os dados estão disponíveis. Até a previsão próxima ao final deste intervalo provavelmente não será confiável. Nota sobre pesos Em geral, os pesos passados ​​para este construtor devem somar até 1.0. No entanto, como uma conveniência, se a soma dos pesos não for igual a 1,0, esta implementação dimensiona todos os pesos proporcionalmente para que eles somem para 1,0. Parâmetros: pesos - um conjunto de pesos a atribuir às observações históricas ao calcular a média móvel ponderada. WeightedMovingAverageModel Constrói um novo modelo de previsão média móvel ponderada, usando a variável nomeada como a variável independente e os pesos especificados. Parâmetros: independentVariable - o nome da variável independente a ser usada neste modelo. Pesos - uma série de pesos para atribuir às observações históricas ao calcular a média móvel ponderada. WeightedMovingAverageModel Constrói um novo modelo de previsão média móvel ponderada. Este construtor destina-se a ser usado apenas por subclasses (portanto, está protegido). Qualquer subclasse usando este construtor deve invocar o método setWeights (protegido) subseqüentemente para inicializar os pesos a serem usados ​​por este modelo. WeightedMovingAverageModel Constrói um novo modelo de previsão média móvel ponderada usando a variável independente fornecida. Parâmetros: independentVariable - o nome da variável independente a ser usada neste modelo. SetWeights Define os pesos utilizados por este modelo de previsão média móvel ponderada para os pesos dados. Este método destina-se a ser usado apenas por subclasses (portanto, está protegido), e somente em conjunto com o construtor (protegido) de um argumento. Qualquer subclasse que utilize o construtor de um argumento deve subseqüentemente chamar setWeights antes de invocar o método AbstractTimeBasedModel. init (net. sourceforge. openforecast. DataSet) para inicializar o modelo. Nota sobre pesos Em geral, os pesos passados ​​para este método devem somar até 1.0. No entanto, como uma conveniência, se a soma dos pesos não for igual a 1,0, esta implementação dimensiona todos os pesos proporcionalmente para que eles somem para 1,0. Parâmetros: pesos - um conjunto de pesos a atribuir às observações históricas ao calcular a média móvel ponderada. Retorna o valor de previsão da variável dependente para o valor dado da variável de tempo independente. As subclasses devem implementar este método de forma consistente com o modelo de previsão que implementam. As subclasses podem fazer uso dos métodos getForecastValue e getObservedValue para obter previsões e observações anteriores, respectivamente. Especificado por: previsão na classe AbstractTimeBasedModel Parâmetros: timeValue - o valor da variável de tempo para o qual um valor de previsão é necessário. Retorna: o valor de previsão da variável dependente para o tempo determinado. Lances: IllegalArgumentException - se houver dados históricos insuficientes - observações passadas para init - para gerar uma previsão para o valor de tempo determinado. GetNumberOfPredictors Retorna o número de preditores usados ​​pelo modelo subjacente. Retorna: o número de preditores utilizados pelo modelo subjacente. GetNumberOfPeriods Retorna o número atual de períodos usados ​​neste modelo. Especificado por: getNumberOfPeriods na classe AbstractTimeBasedModel Retorna: o número atual de períodos usados ​​neste modelo. GetForecastType Retorna um nome de uma ou duas palavras deste tipo de modelo de previsão. Mantenha isso curto. Uma descrição mais longa deve ser implementada no método toString. Isso deve ser substituído para fornecer uma descrição textual do modelo de previsão atual, incluindo, sempre que possível, qualquer parâmetro derivado usado. Especificado por: toString na interface ForecastingModel Overrides: toString na classe AbstractTimeBasedModel Retorna: uma representação de string do modelo de previsão atual e seus parâmetros. net. sourceforge. openforecast. models Class MovingAverageModel Um modelo de previsão média móvel é baseado em uma série temporal construída artificialmente Em que o valor de um determinado período de tempo é substituído pela média desse valor e os valores para algum número de períodos anteriores e sucessivos. Como você pode ter adivinhado a partir da descrição, este modelo é mais adequado para dados da série temporal, ou seja, dados que mudam ao longo do tempo. Por exemplo, muitos gráficos de ações individuais no mercado de ações mostram 20, 50, 100 ou 200 dias de média móvel como forma de mostrar tendências. Uma vez que o valor da previsão para um determinado período é uma média dos períodos anteriores, a previsão sempre parecerá atrasada por aumentos ou diminuições nos valores observados (dependentes). Por exemplo, se uma série de dados tiver uma tendência ascendente notável, então uma previsão média móvel geralmente fornecerá uma subestimação dos valores da variável dependente. O método da média móvel tem uma vantagem em relação a outros modelos de previsão, na medida em que suaviza picos e depressões (ou vales) em um conjunto de observações. No entanto, também possui várias desvantagens. Em particular, este modelo não produz uma equação real. Portanto, não é tão útil como uma ferramenta de previsão de longo alcance. Só pode ser usado de maneira confiável para prever um ou dois períodos para o futuro. O modelo de média móvel é um caso especial da média móvel ponderada mais geral. Na média móvel simples, todos os pesos são iguais. Desde: 0.3 Autor: Steven R. Gould Campos herdados da classe net. sourceforge. openforecast. models. AbstractForecastingModel MovingAverageModel () Constrói um novo modelo de previsão média móvel. MovingAverageModel (período int) Constrói um novo modelo de previsão média móvel, usando o período especificado. GetForecastType () Retorna um nome de uma ou duas palavras deste tipo de modelo de previsão. Init (DataSet dataSet) Usado para inicializar o modelo de média móvel. ToString () Isso deve ser substituído para fornecer uma descrição textual do modelo de previsão atual, incluindo, sempre que possível, qualquer parâmetro derivado usado. Métodos herdados da classe net. sourceforge. openforecast. models. WeightedMovingAverageModel MovingAverageModel Constrói um novo modelo de previsão média móvel. Para que um modelo válido seja construído, você deve chamar init e passar um conjunto de dados contendo uma série de pontos de dados com a variável de tempo inicializada para identificar a variável independente. MovingAverageModel Constrói um novo modelo de previsão média móvel, usando o nome dado como a variável independente. Parâmetros: independentVariable - o nome da variável independente a ser usada neste modelo. MovingAverageModel Constrói um novo modelo de previsão média móvel, usando o período especificado. Para que um modelo válido seja construído, você deve chamar init e passar um conjunto de dados contendo uma série de pontos de dados com a variável de tempo inicializada para identificar a variável independente. O valor do período é usado para determinar o número de observações a serem utilizadas para calcular a média móvel. Por exemplo, para uma média móvel de 50 dias onde os pontos de dados são observações diárias, o período deve ser definido como 50. O período também é usado para determinar a quantidade de períodos futuros que podem ser efetivamente previstos. Com uma média móvel de 50 dias, não podemos razoavelmente - com algum grau de precisão - prever mais de 50 dias além do último período para o qual os dados estão disponíveis. Isso pode ser mais benéfico do que, digamos, um período de 10 dias, onde apenas podemos razoavelmente prever 10 dias além do último período. Parâmetros: período - o número de observações a serem utilizadas para calcular a média móvel. MovingAverageModel Constrói um novo modelo de previsão média móvel, usando o nome dado como a variável independente e o período especificado. Parâmetros: independentVariable - o nome da variável independente a ser usada neste modelo. Período - o número de observações a serem utilizadas para calcular a média móvel. Usado para inicializar o modelo de média móvel. Esse método deve ser chamado antes de qualquer outro método na classe. Uma vez que o modelo de média móvel não obtém qualquer equação para previsão, esse método usa o DataSet de entrada para calcular valores de previsão para todos os valores válidos da variável de tempo independente. Especificado por: init in interface ForecastingModel Overrides: init in class AbstractTimeBasedModel Parâmetros: dataSet - um conjunto de dados de observações que podem ser usadas para inicializar os parâmetros de previsão do modelo de previsão. GetForecastType Retorna um nome de uma ou duas palavras deste tipo de modelo de previsão. Mantenha isso curto. Uma descrição mais longa deve ser implementada no método toString. Isso deve ser substituído para fornecer uma descrição textual do modelo de previsão atual, incluindo, sempre que possível, qualquer parâmetro derivado usado. Especificado por: toString na interface ForecastingModel Overrides: toString na classe WeightedMovingAverageModel Returns: uma representação de cadeia do modelo de previsão atual e seus parâmetros. Na prática, a média móvel proporcionará uma boa estimativa da média da série de tempo se a média for constante Ou mudando lentamente. No caso de uma média constante, o maior valor de m dará as melhores estimativas da média subjacente. Um período de observação mais longo significará os efeitos da variabilidade. O objetivo de fornecer um m menor é permitir que a previsão responda a uma mudança no processo subjacente. Para ilustrar, propomos um conjunto de dados que incorpora mudanças na média subjacente das séries temporais. A figura mostra a série temporal usada para ilustração juntamente com a demanda média da qual a série foi gerada. A média começa como uma constante em 10. Começando no tempo 21, ela aumenta em uma unidade em cada período até atingir o valor de 20 no tempo 30. Então, torna-se constante novamente. Os dados são simulados adicionando à média, um ruído aleatório de uma distribuição Normal com média zero e desvio padrão 3. Os resultados da simulação são arredondados para o inteiro mais próximo. A tabela mostra as observações simuladas usadas para o exemplo. Quando usamos a tabela, devemos lembrar que em qualquer momento, apenas os dados passados ​​são conhecidos. As estimativas do parâmetro do modelo, para três valores diferentes de m, são mostradas em conjunto com a média das séries temporais na figura abaixo. A figura mostra a estimativa média móvel da média em cada momento e não a previsão. As previsões mudariam as curvas médias móveis para a direita por períodos. Uma conclusão é imediatamente aparente da figura. Para as três estimativas, a média móvel está atrasada por trás da tendência linear, com o atraso crescente com m. O atraso é a distância entre o modelo e a estimativa na dimensão temporal. Por causa do atraso, a média móvel subestima as observações à medida que a média está aumentando. O viés do estimador é a diferença em um momento específico no valor médio do modelo e o valor médio previsto pela média móvel. O viés quando a média está aumentando é negativo. Para uma média decrescente, o viés é positivo. O atraso no tempo e o viés introduzido na estimativa são funções de m. Quanto maior o valor de m. Maior a magnitude do atraso e do viés. Para uma série de crescimento contínuo com tendência a. Os valores de lag e tendência do estimador da média são dados nas equações abaixo. As curvas de exemplo não combinam essas equações porque o modelo de exemplo não está aumentando continuamente, antes ele começa como uma constante, muda para uma tendência e depois se torna constante novamente. Também as curvas de exemplo são afetadas pelo ruído. A previsão média móvel de períodos no futuro é representada pela mudança das curvas para a direita. O atraso e o desvio aumentam proporcionalmente. As equações abaixo indicam o atraso e a polarização de um período de previsão para o futuro em relação aos parâmetros do modelo. Novamente, essas fórmulas são para uma série de tempo com uma tendência linear constante. Não devemos nos surpreender com esse resultado. O estimador da média móvel é baseado na suposição de uma média constante, e o exemplo tem uma tendência linear na média durante uma parcela do período de estudo. Uma vez que as séries em tempo real raramente obedecerão exatamente aos pressupostos de qualquer modelo, devemos estar preparados para esses resultados. Também podemos concluir a partir da figura que a variabilidade do ruído tem o maior efeito para m menores. A estimativa é muito mais volátil para a média móvel de 5 do que a média móvel de 20. Temos os desejos conflitantes de aumentar m para reduzir o efeito da variabilidade devido ao ruído e diminuir m para tornar a previsão mais sensível às mudanças Em média. O erro é a diferença entre os dados reais e o valor previsto. Se a série temporal é verdadeiramente um valor constante, o valor esperado do erro é zero e a variância do erro é composta por um termo que é uma função e um segundo termo que é a variância do ruído,. O primeiro termo é a variância da média estimada com uma amostra de observações m, assumindo que os dados provêm de uma população com um meio constante. Este termo é minimizado fazendo m o maior possível. Um grande m faz com que a previsão não responda a uma mudança nas séries temporais subjacentes. Para tornar as previsões sensíveis às mudanças, queremos m o mais pequeno possível (1), mas isso aumenta a variação do erro. A previsão prática requer um valor intermediário. Previsão com o Excel O suplemento de previsão implementa as fórmulas de média móvel. O exemplo abaixo mostra a análise fornecida pelo suplemento para os dados da amostra na coluna B. As primeiras 10 observações são indexadas -9 a 0. Comparadas com a tabela acima, os índices do período são deslocados em -10. As primeiras dez observações fornecem os valores de inicialização para a estimativa e são usadas para calcular a média móvel para o período 0. A coluna MA (10) (C) mostra as médias móveis calculadas. O parâmetro médio móvel m está na célula C3. A coluna Fore (1) (D) mostra uma previsão para um período no futuro. O intervalo de previsão está na célula D3. Quando o intervalo de previsão é alterado para um número maior, os números na coluna Fore são deslocados para baixo. A coluna Err (1) (E) mostra a diferença entre a observação e a previsão. Por exemplo, a observação no tempo 1 é 6. O valor previsto feito a partir da média móvel no tempo 0 é 11,1. O erro então é -5.1. O desvio padrão eo desvio médio médio (MAD) são calculados nas células E6 e E7, respectivamente.

No comments:

Post a Comment